If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2+x^2=312
We move all terms to the left:
7^2+x^2-(312)=0
determiningTheFunctionDomain x^2-312+7^2=0
We add all the numbers together, and all the variables
x^2-263=0
a = 1; b = 0; c = -263;
Δ = b2-4ac
Δ = 02-4·1·(-263)
Δ = 1052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1052}=\sqrt{4*263}=\sqrt{4}*\sqrt{263}=2\sqrt{263}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{263}}{2*1}=\frac{0-2\sqrt{263}}{2} =-\frac{2\sqrt{263}}{2} =-\sqrt{263} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{263}}{2*1}=\frac{0+2\sqrt{263}}{2} =\frac{2\sqrt{263}}{2} =\sqrt{263} $
| 20+9f=83 | | 10x-2x=128 | | q-25=6 | | 3x+16=9x-11 | | -51=1-4(-2x+3) | | -7(-3u+8)-9u=6(u-7)-4 | | 3x+4-x=5x-2(x-2) | | 11-4x-5=-2(2x-3) | | y+2/10=35/50 | | -7=6x-1=0 | | x/91=-2 | | 2-7(-5n-7)=261 | | 7(-2x-7)+9=142 | | 6-x+6=-1+x | | 2x(3)=90 | | 6p-4p+4=-3p+10 | | -33=v-79 | | 5x-3=2x+12* | | 3(1+4x)=-57 | | 0.25-3.20=14b | | 4(2g-3)=8(g-2) | | 50x=61 | | -1.2=v/3+6.3 | | -2-3y=-23 | | 7^2+x^2=249 | | r-5=86 | | 8d-21=75 | | 76+8x=132 | | 4(m+1)=3m+10 | | 6=n-2n | | |2x+6|+4=24 | | -7(-2x+5)=-147 |